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Abstract— Wireless networks introduce new opportunities for songs to 3G UMTS devices. These applications rely on the
music delivery. The trend of using mobile devices on wireless existence of a central server, which receives requests from
networks, can significantly extent the recent change of paradigm and delivers audio files to the mobile clients. Though, aside

in the model of music distribution, by allowing mobile clients to . . .
search for audio music in a network of wireless mobile hosts. from these single-hop infrastructured wireless networks, mu-

This work, introduces the application of Content-Based Music SiC delivery can also unfold over the emerging Mobile Ad-
Information Retrieval (CBMIR) in wireless ad-hoc networks. We hoc NETworks (MANETS). The wireless ad-hoc networks
investigate, for the first time in the literature, the challenges are peer-to-peer, multi-hop, mobile wireless networks, where
posed by the wireless medium and recognize the factors that juormation packets are transmitted in a store-and-forward
require optimization. We propose novel techniques, which attain fashion from source to destination, via intermediate nodes
a significant reduction in both response time and network traffic, ST A . )
compared to naive approaches. Extensive experimental results SUch networks are expected to give rise to scenarios like the
illustrate the appropriateness, effectiveness and efficiency of the one previously mentioned. The salient characteristics of these
proposed method to this bandwidth-starving and volatile, due to networks, i.e., dynamic topology, bandwidth-constrained com-
mobility, environment. munication links and energy-constraint operation, introduce
significant design challenges.

In this paper, we focus on the following problem. We
consider a number of mobile hosts that participate in a wireless
A. Music distribution adopts a new paradigm ad-hoc network, where each host may store several audio

Imagine listening to music through your enhanced pockeRusical pieces. Assume a user that wants to search in the
sized ultralight device while jogging or resting in a park. Avireless network, to find audio pieces that are similar to a
device that, apart from the ability to play pre-stored musi@iven one. For instance, the user can provide an audio snippet
like any MP3 player in a area that is not covered by wirele$§-9., @ musical piece excerpt) and query the network to find
local area networks, can also search for and acquire mule peers that store similar pieces. As will be described in
songs from other people’s similar musical devices. This ddi¥e following, the definition of similarity can be based on
exchange is attainable through the device’s wireless connecfigveral features that have been developed (see Section IV-
ity equipment allowing for participation in ad-hoc networksA) for Content-Based Music Information Retrieval (CBMIR).
formed with similar devices being in close proximity. Al-It is important to note that the querying host does not have
though such a scenario may seem futuristic, it is not so dista@fy prior knowledge of neither the qualifying music pieces

Having already reached the end of an era for the traditiori2@' the hosts’ locations that contain them. This differentiates
music distribution [45], the market model as well as the buyiri§e current problem from existing ones that are interested
behavior of consumers have been reformed by the developmiéigt in identifying the hosts in a wireless ad-hoc network
of technologies like MP3 (and the supporting applications fépat contain a known musical piece. Moreover, the examined
their distribution, e.g.Apple’s iTunesiMusic online music Problem is complementary to the one of delivering streaming
services) and the penetration of the World Wide Web. Pedpedia (audio and video) [3] in wireless ad-hoc networks, since
to-peer networks and the maturing distributed file shariffe latter does not involve any searching for similar musical
technology, enable the dissemination of musical content #eces, and just focuses on transferring data from one host to
digital forms, permitting customers an ubiquitous reach @jother.
stored music files.

New opportupities for music deliyery are addjtionally introg. Requirements set by the wireless medium
duced by the widespread penetration of the wireless networks
(wireless LANs, GPRS, UMTS [15]) such as the pioneering This research focuses on the development of methods for

applications [47] supporting the distribution of MP3-basedéarching audio music by content in wireless ad-hoc networks,
where the querier receives music excerpts matching to a posed
*This research is supported by tHEPAKAEITOSX and by alTET  query. As for the legal issues of transferring and reproducing

grant in the context of the project “Data Management in Mobile Ad Hoghe musical pieces found are concerned analogous issues
Networks” funded bylITYOAI'OPAX II national research program. The X

second author is supported by IKY postdoctoral scholarship. Prelimina@f€ Peing confronted in online music diSFribUtion over wired
results of this research appeared in [26]. P2P networks, where ways to protect intellectual property
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are now maturing. CBMIR applications in wireless network®r the data, their size prohibits the dissemination for direct
can, and must, adopt any such developments. Additionally, focal retrieval. To our best knowledge, no existing approach
the issue of reproduction, adequate techniques for preserviray addressed all the aforementioned issues, collectively, in
intellectual property do exist [23]. the field of MANETS.

The searching procedure can benefit from the latest ap-
proaches for CBMIR in wired P2P networks (see Section I, Contribution and paper organization
B). Nevertheless, the combination of the characteristics of theT
wireless medium and of the audio-music data pose new apd
challenging requirements, which call for new solutions:

his work introduces the application of CBMIR in wireless

hoc networks and investigates the challenges posed by the

) wireless medium in order to perform content-based MIR, as

1) CBMIR methods for wired P2P networks do not congescribed in the paradigm of Section I-A. Accordingly, we
sider the continuous alteration of the network topologpropose novel techniques, which attain a significant reduction
which is inherent in wireless ad-hoc networks, sincg poth response time and network traffic, compared to naive
Mobile Hosts (MHSs, the terms MH and peer are Sim"aépproaches.

in this context and thus interchangeable) are moving andtg address the requirements posed by the wireless medium,
become in and out of range of the others continuouslye propose the following techniques:

One impact of this mobility is that selective propagation 1) To fulfill the first requirement, we perform breadth-

Fli the quzery among '\gHbS' eg. by usihn_g data indexing first searching over the wireless ad-hoc network using
ke DHT* as proposed by [55] or caching past queries knowledge about neighboring MHs (obtained by probing

E)[|2 4] Af‘gge'xt d;lncurr?ents al?df[zr? ] for muhgic), is not;easi.- neighborhood at specific time points). This approach can
€. itionally, the recall of the searching procedure is cope with mobility, maintain increased final recall, and

affected by the possibility of unsuccessful routing of the constraint the drawbacks of flooding, e.g., excessive traf-

query, as well as the answers, over t.he changing network fic due to multiple broadcasts (explained in Section II-
topology. Thus, new query propagation methods need be Q)

developed for wireless ad-hoc networks. 2)

2) The need to reduce traffic, which results from the size
of audio-music data (approx. 8MBytes for a 3 minute
guery). This is done by replacing the original query with
a newly developed representation that utilizes novel, ap-
propriate transcoding schemes. Although traffic concerns
CBMIR in wired P2P networks too, the requirement of
traffic reduction is much more compelling in wireless
ad-hoc networks, where the communication ability is
usually assumed to be around 1 MBps for relatively long
distances (see also Section 1I-C). It is worth noticing,
that the reduction of traffic also reduces the involvement
of other MHs, due to constraints in their processing
power and autonomy.

) . representation.
3) In CBMIR over wired P2P networks, should a matching T P best k ledae thi Kis the first t ine th
music excerpt be found, it can immediately be returned 0 our best knowledge this Work IS the Tirst {o examine the

to the querying node, since the querier is directly alsSu€ Of CBMIR in ad-hoc wireless networks. The contribu-

cessible (through its IP address). In contrast, in wirele gtr;znacr)?:trl])eﬂi]r?h:enrzg?lrJeCtISirr]ezzetE?s piri;)t;lenrgvz?glﬂ;?itﬁinttg;t
ad-hoc networks the answers to the query have to q ’ 9

propagated back to the querier via the network (th%ombines the aforesaid techniques and addresses the posed
querier is not directly accessible). This requiremerq?quirements, and iii) an extensive experimental evaluation,

. g oo which illustrate the efficiency of the proposed methodology.
further burdens traffic, thus requiring optimization. The rest of the paper isyorganizgd gs follows Sectiognyll
. EX|st|.ng methodolo'glgs in MANETS, addrgss the aforgmeﬂ'escribes background and related work. In Section Il we
tioned issues in a limited extent._ In _part|cular, algorlt_hméut”ne the proposed method, whereas Section IV describes
proposed for the problem of routing in MANETS considefo,y res selection and the indexing method that we use. Sec-

neither the peculiarities of searching for CBMIR purposeg,, v provides a complete account of the searching algorithms

nor the size of the transferred data, since music data agy sybsequently, Section VI describes the proposed routing

considerably larger than routing packets. These peculiaritig§icies. Section VIl presents and discusses the experimenta-

include the need to search for similarity in a search spagg, ang results obtained. Finally, the paper is concluded in
where similar content location is not known beforehand. A§ection VIIL

The second requirement is addressed by a technique that
uses a concise, feature-based representation of the query
with reducing length. The reducing-length representation
(a.k.a transcoding) that we propose drastically degrades
traffic, while reducing the computation performed at
each MH as well.

3) The additional traffic produced by the third requirement
is addressed by a twofold proposal: (i) We propose
policies to constraint the number of MHs involved for
the propagation of the answers, by exploiting any MHs
that were involved during the propagation of the query.
(i) We allow such MHs to prune the propagation of
answers, based on a property of the previously described

1The searching procedure, i.e., the subject of this work, does not reveal
concerns about legal issues, since it only involves excerpts. Il. BACKGROUND AND RELATED WORK

2Distributed Hash Tables. In such systems each node is assigned with thi ti CBMIR id d di t d
region in a virtual address space, while each shared document is associated! (NS Section, IS considered as a discrete proceaure

with a value (id) of this address space. as well as in terms of a process deployed in P2P networks.



An overview of content-based music information retrievdbl]. Pitch detection is dealt with time-domain fundamental
systems, both for audio and for symbolic music notation careriod pitch detection, autocorrelation pitch detection, adaptive
be found in [53]. Moreover, a brief introduction on informatiorfilter pitch detection, cepstrum analysis and frequency-domain
discovery and resource in wireless mobile ad-hoc networksgich detection. It should be noted that no pitch detection

provided. algorithm is totally accurate and some that appear to be,
utilize music inputs that follow specific constraints or show
A. CBMIR in audio increased computational requirements (non real-time). Key

Music exists in two representations: the symbolic represegli:icumes in pitch detection include attack transients, low
. L ; nd high frequencies identification, myopic pitch tracking and
tation (MIDI, Humdrum, common music notation) and th g d yopic p g

. i dio ¢ 3 et Th%coustical ambience. Rhythm detection, on the other hand,
acoustic representation (audio format - wav, mps, € ). %¥%n be divided into three levels: low-level (event detection),
key difference lies in the fact that the family of symboli

Smid-level (transcription into notation) and high-level (style

representations contains information of what a musical play&ﬁalysis). As with pitch detection, rhythm detection is also
should perform, whereas the acoustic representations compy, '

. L l!ﬁ?erently difficult due to non accurate human performance of

a specific rgcorded performance of a music piece. Acous sical scores as well as the ambiguity of the music notation.
representations contain the sampled waveforms of a sound [
while symbolic contain various degrees of structured descrip- ]
tive music. In this work our focus is on acoustic musical dat&: CBMIR in P2P networks

Our focus on acoustic music is motivated by the popularity Research related to the application of CBMIR in wired P2P
of music in acoustic format. A reason of that popularity isetworks is recent. In one of the first attempts, [56] presents
the ease of quality performance reproduction that acoustimr P2P models for CBMIR, which include centralized,
formats offer. In addition, this trend gives as well as receivelecentralized and hybrid categories. Another research based
further impulse by the transition of the music distributiomn a hybrid configuration is presented in [55], in which the
model, which nowadays offers music to download as wekuthors propose a DHT-based system utilizing both manually
Thus, the obvious result is the formation of digitized musispecified attributes (artist, album, title, etc.) and extracted
databases the size of which is rapidly augmenting. As uséesitures in order to describe the musical content of a piece.
attempt information retrieval in these collections, methods fdihe authors of [61] propose the utilization of the feature
Music Information Retrieval (MIR) are necessary. Althouglelection and extraction process that is described in [60] for
abundantly used, even nowadays, the traditional metadata [@HMIR in a decentralized unstructured P2P system. Moreover,
(title, composer, performer, genre, date, etc.) of a music pieahough oriented towards a differentiated discipline, the work
give rather minimal information about the actual content of thaf [50] refers to audio retrieval in P2P networks. The principal
music object itself. Their use aims solely in performing MIRarget of this research is combating of unauthorized music
using textual information of the music pieces. On the othéite sharing in P2P networks. Finally, [28] investigated the
hand, MIR can be performed based on humming [22] (usiqmoblem of content-based searching for similar acoustic data
a microphone) or on a small piece of musical file. This typaever unstructured decentralised P2P networks, under the time-
of queries lies within the Content-Based MIR. In CBMIR, amarping distancé
actual music piece is required in order to compare its contentin the present work we deal with a wireless ad-hoc network,
with the content of the music pieces already available in tiehere two nodes can communicate only if in close proximity
database. (in-range). As described, in this kind of network peers par-

Though, acoustic sequences tend to be very large in size degate randomly and for short term, and when they do, they
three minute CD-quality recording can be about 30 MByteschange frequently their location. These factors cause existing
Thus, for an approach to be efficient, characteristic featuragproaches, e.g., indexing, to become inapplicable.
need be extracted from the music file in order to perform
similarity search on them. As a first approach for featurg, |nformation discovery/provision in wireless mobile ad-hoc
extraction, one can transform the acoustic data into symboligatworks
leading to a complete account of the datum .(transcrlptllon),AS was previously mentioned, a MANET is a collection of
and accordingly extract features. Although skilled musicians

. L S ireless MHs forming a temporary network without the aid
are able to perform music transcription with high success [3 . . . .
. L . f any centralized administration or standard support services
computer music transcription is generally admitted to be ver

hard and poor performing [44], [60]. For this reason, a secorﬁnogmig)r/n?;ﬁ“labbeleczz:]Zect\g |dde area network to which the hosts
approach for feature extraction is to compute approximations Y y )

; . Ad-hoc networks are significantly different than Wireless
of some of the four most semantically important features such . .
. . ; ocal Area Networks (WLANS), which are infrastructured,
as pitch, rhythm, timbre and dynamics.

e%nd Wireless Personal Area Networks (WPANS), e.g., Blue-

Common alternatives, in the direction of approximation (()_[]ooth which are very short range wireless networks (with a
some of the four most semantically important features include™ y 9

pitch detection [6], [13] and rhythm detection [40], [42], 4pynamic Time Warping (DTW) has been proposed as a more robust

similarity measure to Euclidean distance, as it can express similarity between

3[18] reports that MP3 compression of bitrates above 128Kbps is “near Qo time series even if they are out of phase in the time axis or they do not
quality”. In this case, the recording requires 5-8 MBytes, which is still largéave the same length.



range around to 10 meters. Although, different than WLANs AODV [43] shares DSR’s on-demand characteristics in
and WPANs, MANETSs are often implemented using WLANghat it also discovers routes on an “as needed” basis via a
or WPANSs [62]. Thus, the medium access control layer of ttemilar route discovery process. However, AODV adopts a
ad-hoc networks is commonly assumed to be than of WLANgry different mechanism to maintain routing information. It
or WPANSs, providing, for instance, symbol rates at the rangeses traditional routing tables, one entry per destination. This
of 11 and up to 50 Mbps. Though, these rates are achievatslein contrast to DSR, which can maintain multiple route
for ranges less than 70 meters; for ranges between 1laehe entries for each destination. Without source routing,
130 meters the rate is 1 Mbps, whereas for distances long€@DV relies on routing table entries to propagate a RREP
than 100 meters, the rates drop below 1 Mbps (Figure 2b2ack to the source and, subsequently, to route data packets to
in [62] and Table 3.6 in [2]). For this reason, almost all théhe destination. AODV usedestination sequence numbéecs
studies involving transmissions at a range of 250 meters mevent routing loops and to determine freshness of routing
longer, assume a symbol rate between 500 Kbps and 1 Mbipgormation.

In an ad-hoc network, when a source node desires to send &n-demand and hybrid routing protocols rely on some
message to some destination node and does not already hafeera of broadcasting broadcasting is best suited in cases
valid route to that node, it initiates a path discovery processwhere information packets are transmitted to multiple hosts in
locate the destination. Nodes are identified by their IP addreke network.Flooding is the simplest broadcasting approach,
and maintain a broadcast ID, which is incremented after evemhere every node in the network forwards the packet exactly
route request they initiate. The broadcast ID together with tece; flooding ensures full coverage of the MANET provided
node’s IP address, uniquely identify a route request. In tlieat there are no network partitions. Flooding, though, gener-
same manner, the transmitted data requests can be identifstés too many redundant transmissions, causindprib@dcast

There is no prior relevant work on performing contentstorm problem39].
based information retrieval in MANETS, though there is a Various algorithms have been proposed to address this prob-
wealth of routing algorithms. Routing algorithms for MANETHem [35], [30]. These algorithms can be classified as follows:
are radically different from the traditional routing (e.g., Opea) probabilistic approaches(counter-based, distance-based,
Shortest Path First) and information search protocols (e.mcation-based), and byleterministic approachegglobal,
Distributed Hash Table) used in hardwired networks, due tpasi-global, quasi-local, local). The former methods do not
the absence of “fixed” infrastructure (servers, access poinggiarantee full coverage of the network, whereas the latter do
routers and cables) in a MANET as well as the mobility of thprovide coverage guarantees, and thus they are preferable.
nodes. For wireless ad-hoc networks there have been proposethe deterministic approacheprovide full coverage of the
various routing/discovery protocols, which roughly fall into th@etwork for a broadcast operation, by selecting only a subset
following categories ([1]): a) table-driven or proactive routingf nodes to forward the broadcast packetyard node} and
protocols, b) source-initiated on-demand or reactive routinge remaining nodes are adjacent to the nodes that forward the
protocols, and c) hybrid routing protocols. packet. All the categories of the deterministic algorithms, apart

Proactive protocols maintain unicast routes between &bm thelocal algorithms require (full or partial) global state
pairs of nodes regardless of whether all routes are actualyormation, thus they are impractical. The localr@ighbor-
used. Therefore, they require consistent, up-to-date routiggsignatingalgorithms maintain some local state information,
information from each node to every other node in the netwoyle., 1-hop neighborhood information by periodic exchange of
and thus are practically unfeasible for large-scale and dynamMELLO’ messages, which is feasible and not costly. In the
MANETS. neighbor-designating methods, the forwarding status of each

On the other hand, the main idea in on-demand (reactivédde is determined by its neighbors. As a matter of fact, the
routing is to find and maintain only needed routes. Recall thedurce node selects a subset of its 1-hop neighbors as forward
proactive routing protocols maintain all routes without regangodes to cover its 2-hop neighbors. This forward node list is
to their ultimate use. The obvious advantage with discoveripgggybacked in the broadcast packet. Each forward node in
routes on-demand is to avoid incurring the cost of maintainingrn designates its own forward node list.
routes that are not used. This approach is attractive wherRemotely related to the topic of this paper is the issue of
the network traffic is bursty and directed mostly toward gulticasting streaming media (audio/video) to MANETS (e.g.,
small subset of nodes. The most popular on-demand routifig]) or unicasting audio to 3G UMTS devices [47]. These
protocols are the Dynamic Source Routing (DSR) and ad-h@erks though assume the existence of a central server/supplier,

On-demand Distance Vector (AODV). which provisions the mobile clients with multimedia data.
DSR [20] is characterized by the use of source routing.

That is, the sender knows the complete hop-by-hop route to
the destination. These routes are stored in a route cache. The
data packets carry the source route in the packet header. Whelm this work, music similarity is used in order to identify

a node in the ad-hoc network attempts to send a data packesitoilar musical pieces to a query musical piece, in a network
a destination for which it does not already know the route, @ mobile hosts (as described in Section I-A). The problem
uses a route discovery process to dynamically determine swéhfinding similar music sequences in a MANET requires a
a route. Route discovery works by flooding the network witeearching procedure, which will detect MHs in the MANET
route request (also called query) packets. that have similar sequences, find those sequences in the MHs,

IIl. OUTLINE OF THE SEARCHING PROCEDURE



and return them back to the querier. The already described re- Query _

. . . Searching Process
quirements of the wireless framework formulate the examined User poses a query 0
searching procedure in the following way:

Q is transformed to a representation form R
R is broadcast to all peers in range
i) There is no prior knowledge of the data MHs store, that e o oo an e e
is the querier has no knowledge of the location of the Each answer set is broadcast back to the querier
. 6. Resolution of false-positives (possible places are:
requ”ed data' at answer providing peers, the querier or
ii) MHs that have qualifying sequences have to be reached in st Dy pemermediaepeery) werfapplication
a way that addresses their mobility and minimizes traffic. | querier
Due to their relative positions and the preferred toleran%e
to traffic (see below), all such nodes may not be possiblI 2
to reach.
iii) At each reached MH, the qualifying sequences have (| results that were missed due to the transformation).
be detected by detaining the MHSs, in terms of CPU cogligwever, its particular implementation determines whether
__ aslittle as possible. . false-positives may be produced or if they will be completely
iv) Each qualifying sequence has to reach the querier inggsiged. Based on all the aforementioned issues, an abstract
way that reduces traffic. Notice that the answers may haygnheme to describe the entire searching procedure consists of
to be routed back to the querier following paths differenhe steps depicted in Figure 2, which are also summarized in
from those through which the MHs with qualifyingsoyr events.
sequences were reached, since intermediate MHS mayr, avoid duplicate effort, the procedure tagswith an 1D
have changed their position, and therefore be out of ranggee section I1-C). This way, MHs that have already received it
Due to this, every detected answer may not be possiif| perform no further action. Additionally, the propagation of
to reach the querier. R to the neighboring MHs is controlled by a parameter called
An example is illustrated in Figure 1. The querier is M. h, which is a counter that is decreased at each receiving MH
During the forward phase (Figure 1a), the query is receivgdenotes the available number of hops). Its initial value, at the
by MHs P, and P;. During the backward phase (Figure 1b)querier, is equal ta/axzHop. This value corresponds to the
answers can be directly returned By (still in range of P1). preferred tolerance to traffic and network reach/coverage. The
Due to relative movement?; is, now, out of range. Thus its propagation of answer sets (resulting from step 5) is handled
answers are routed through, (previously out the range of similarly.
Py). As already mentioned, the searching process consists of
a forward and a backward phase. During the fornferjs

reception
of R

Eal N

reception
of answer
set

'

Searching process and basic events.

propagated and during the latter answers are routed back to
the querier. The two phases are interleaved, since during the

Pan Py V propagation ofR by some MHs, other MHs are returning
P, / Plo‘/l/ answers to the querier. The backward phase’s volume mainly
; '\..\84;0 depends on the existence of answers and the number of false-
P2 Ps positives, while the forward phase depends on the sizR,of
T oPs - ) our coverage willingness as well as the network reachability.
@ (b;“""’ In general, the volume of information transferred during the

backward phase is larger than that of the forward phase.
Having outlined the searching procedure, in the following
sections we detail its parts. First we elaborate on the features
at can be selected for the formation®f Next, we describe
e acceleration of similarity searching within each MH by us-
Wg indexing. Based on these, we next describe two searching
algorithms, which follow different choices with respect to the
formation of R. Finally, we present methods to improve the
ckward phase.

Fig. 1. An example of the searching procedure.

The searching procedure is initiated at the querying MI%:
aiming at detecting sequences in other MHs, which contq
sequences whose similarity from the query sequeficés
within user-defined boundaries, a thresheldThe definition
of the distance measure is detailed in Section IV. Just for n
we can intuitively think of the distance as a measure of how
dissimilar two music sequences are. The length of detected
sequences is equal to the length of the query sequ@nce

To address traffic minimizatiorQ has to be transformed toA- Features for CBMIR
a representation form, denoted Asthrough which qualifying  One of the main challenges in MIR is the choice of
sequences are detected. representation of the musical information within the system.

Due to this transformation, it is possible that false-positivRs the sequences of acoustic music objects tend to be quite
results may appear. A false positive result is a result that dprge in size, they are commonly described by a set of features.
pears to be a true result when comparing with the transformddmerous standpoints exist on what features to retain and on
representation, though, under the non-transformed query is hotv to select these features [5], [37], [38], [41], [57], [58]. The
a real result. MoreoverR must present no false-negativeselection of appropriate features is considered very important

IV. FEATURES AND INDEXING



in music information retrieval [19]. Meaningful features helB. Indexing within peers
in the _effecti_ve representation (_)f_the objects and e_nable therg facilitate the searching within peers we use the fol-
use of indexing schemes for efficient query processing.  |owing approach. In a peer, each original audio sequence is
Ordinary features for symbolic music can be the any dfansformed to a number of multidimensional points. We use
the key characteristics of music (such as pitch, rhythm aadsliding window of lengthn over the sequence and apply
timbre [7]) or even structural patterns [9], as used in [25Riscrete Wavelet Transform (DWT) to the contents of each
The most typically encountered features for the acoustidndow, producingn coefficients per window. An example
representation are produced by time analysis, spectral analysiglepicted in Figure 3a. Therefore, each audio sequence
and wavelet analysis. produces a set ofi-dimensional points in the feature space.
\ﬁincen depends on the query length and, thus, takes relatively
fLge values (e.g., 64 K), in order to efficiently index them
he feature space, we select only the figsdimensions

In this work, we do not concentrate on devising ne
features. Instead, we are interested in a methodology for {
searching procedure. Our methodology is able to embrace A o ; .
high performance feature extraction procedure. According r, m each point (in our experiments we uséd-= 64). This

we apply a feature extraction process based on the wav chedure dramatically reduces both the size of the index and
transform. Wavelet transforms provide a simple but yet efﬁ-e number of dimensions without affect.ing much Fhe quality
cient representation of audio by taking into consideration bo% the index. The reason for the latter is the merit of DWT

non-uniform frequency resolution and impulsive characteri cqnpentrate the energy of the_ sequence in the first few
tics, as shown by [8], [33], [34] coefficients. However, false-positives are possible and thus

o require resolution.
The wavelet transform has long been used in image andyjgst importantly, it has been proven by [11] that no

signal processing while its use in information retrieval angyse dismissals are introduced when using only dhéirst
data mining has been extensive [36]. A complete survey @gefficients (due to Parseval’s theorem). Notice that this prop-
wavelet application in data mining can be found in [33]. IRty is proven in [11] for the Euclidean distance. Although
general terms, the wavelet transform is a tool that providggs distance measure is simple, it is known to have several
quality time and frequency resolution, while dividing up datéygyantages, as it has been illustrated by [31]. Nevertheless,
functions, or operators into different frequency componenjge proposed methodology does not decisively depend on the
and then studying each component with a resolution matchggtticular features and distance measure, which are used herein
to its scale[33], [14], [21]. following simplicity as well as computation efficiency reasons.
Wavelets present numerous favorable properties in contrasfo speed-up the retrieval, for each sequence the collection
to other type of analyses. Among them, lie the efficient con®f the resultingd-dimensional points is organized in Mini-
putation complexity, the vanishing moments that support dewum Bounding Rectangles (MBRs), which are, then, stored
noising and dimensionality reduction while focusing on mo$t an R'-tree [4]. Answering to query, the root is initially
important information, the compact support that guarantees tigdrieved and its entries that intersect the query are only
localization of the wavelet, the de-correlated coefficients thttrther examined recursively until reaching a leaf. All non
enable the reduction of complex processes of time domaiiiersecting nodes are not included in the search. An example
into simpler in the wavelet domain and the support to tH& given in Figure 3b. Therefore, when searching for similar
Parseval’s theorem. In addition, wavelets present a multiresgsequences, we first retrieve candidates from théree.
lution property that leads to hierarchical representations aWée rank the candidates so as to process the most promising
manipulations of the objects treated. ones first (we observed that this saves a lot of CPU time)
d then, those candidates are examined against the provided
ery representation. When the latter is reduced (as in the case
éranscoding that will be explained), false-positives are still
ssible. Nevertheless, their number is significantly reduced.
ore details about indexing can be found in [27].

The previously mentioned merits of the wavelet transfomai‘,n
corroborate the use of wavelets on music. The low computati8
complexity assists the already burdened process by the laf}
size of the musical data. The vanishing moments and their
noising capability cope with the noise introduced in music
recordings by the ambient sounds, during recording. The
compact support allows locally altered musical pieces to retain V. SEARCHING ALGORITHMS
their overall similarity, while the multiresolution adheres to the In this section we describe the two algorithms that imple-
perception model of the ear, according to which the perceptiBtent the searching procedure. The first is based on simple

of both large scale quantities and small scale events, rely ugdipices concerning the representatidof the query sequence

the multiresolution capability of the ear [8]. and its propagation during the forward and backward phases.

More particularly, we consider the Haar wavelet transfo;[he second (proposed) IS based on more advanced choices
) o . . . .. With respect to the latter issues.

mation for its simple incremental computation, its capability

concerning the capture of time dependant properties of data ] ) )

and overall multiresolution representation of signals [12] &% Algorithm based on maximal query representation

well as for the incorporation of the previously mentioned A simplistic approach for the representatidhis to set it

properties. However, our approach can easily be extendeddentical to the query sequence. The advantage is that no false-

other types of wavelet transforms. positives occur, since when a possible match has been found by



during the forward phase, which is equal to the entire query.

For large query sequences this causes prohibitive forward
traffic. Evidently, there emerges a trade-off between the two

contrasting phases. What is, therefore, needed is a method
that will balance the traffic between the two phases, aiming at

overall improvement.

Another issue on which ML makes a simplistic choice is
the selection of the neighboring MHs to which the answer-
set is propagated during the backward phase. When handling
the second and third events, ML selects all neighbors for
this purpose, thus resorting to plain flooding. This simplistic
selection can significantly impact the backward traffic. To
overcome the problem we need to devise policies for the
selective routing of the answer-sets. That is, we want to select
only those nodes that are more promising to satisfy the receipt
of the answers, thus significantly reducing backward traffic
without reducing the chances of the answer-sets to reach the
querier.

(b)

Fig. 3. Feature extraction process.

index probing, it can be immediately tested against the queBy Algorithm based on reduced query representation and
itself (i.e., R). Thus, no false-positives will be included intranscoding
the answer-sets, which could negatively impact the backward-, saction V-A it was made clear that there is a tradeoff
phase traffic, as they would be propagated to the querier jyshyeen the forward and backward traffic. ML focuses only on
to find that they are not actual matches. We have to note thaly, i 5rovement of backward traffic and incurs high forward
to be able to perform index probing (i.e., to avoid sequentightic ‘| this section we present a new algorithm, which has
searching at each MH), a small number of DWT coefficientsy, o fo1d objective. The first is to produce a representafton
are included ink2 as well. However, their size is negligibley, 5 achieves a balance between the two phases and minimizes
compared to the SIZE.Of thg query sequence. , the overall traffic. The second is to develop selective routing
The resulting algorithm is denoted as ML (fMaximum g for the propagation of the answer-sets, leading to
representation witt.ocal resolution at MHs). ML is summa- significant reduction of the backward traffic.
rized ip Figure 4 accorgiing to the actions performed for eaChThe first objective is confronted by setting between the
occurring event (see Figure 2). two extremes cases: (i) the minimum possible representation
with only the d DWT coefficients that are required for the
local index-searching (minimizing forward traffic), and (ii) the
anghaximum possible representation with allelements in the
guery sequence itself (eliminating the burden of false-positives

Query initialization The querier assigns tB the entire
query sequence (plus the few query coefficients)
propagates (broadcasts) it to all its neighbors.

Reception of R Upon the reception of?, each MH
P probes its indexes, resolves the false-positives,
produces a list of results (only true-positives). T
answer-set is propagated back to the querier, by bt

casting it toall the neighbors ofP (backward phase).

Accordingly, should there be available R is conveyed
to all P’s neighboring MHs (forward phase).
Reception of an answer-setEach MH P, that is
not the querier, receiving an answer-set, continues
propagation (backward phase) @l its neighboring
MHs as long as there is availabte

An answer-set reaches the querieiVhen an answe
set reaches the querier, then the results are immed
presented to the user.

Fig. 4. The ML algorithm.

Although ML manages to control the traffic during
backward phase (due to the elimination of false-positiveéz)
this comes at the cost of excessive traffic during the forwah
phase. This is due to the representati®rthat is propagated 0-255.

in terms of computation and backward traffic). Therefore,
angktween the two extremes? can consist of the greater
hepwT coefficients, wherel < [ < n. Notice that this type of
Oagepresentation generalizes the two extreme cases: by setting

I = d, R becomes identical to the first (i) case; in contrast,

by setting! = n, R becomes identical to the second (ii)

case, because the DWT coefficients are equivalent to the

n elements of the query sequence (due to the Parseval's
thBeoremy As described in Section IV, a numbérof the

greater DWT coefficients can effectively capture the energy of

the music sequence and reduce the number of false-positives.
- The result is that, compared to the second (ii) case, the forward
ateaffic is expected to be smaller, because n. Compared to

the first (i) case, the backward traffic is expected to be smaller

too, due to the number of false-positives being significantly

reduced, since < [.

the Sin the case of ML we could haveék to consist of all then DWT

efficients. However, we choose thesequence elements in the time domain

@'t to avoid the computation of the inverse DWT, since in our case the time
main presents a smaller storage requirement as the data values are in range



The tuning ofl, however, is difficult, because it depends on Henceforth, the size of the initial query representation is
several factors, like the topology of the MANET, which argiven as a factor (denoted d3 of the complete query size,
changeable. For this reason we follow a different approachihereas the slope of the inverse sigmoid function is controlled
Initially, [ is assigned a large value (see Section VII for itey a parameter denoted as(higher values ofn produce a
tuning) and this value is monotonically reduced during th&teeper slope).
propagation ofR in the forward phase. This technique can be Regarding the second objective, we do not follow the
though of as dranscodingscheme, as it involves sequencesimplistic approach of ML, which propagates the answer-sets
with varying number of DWT coefficients that correspondb all neighbors. In contrast, during the forward phase, as it
to varying approximations of the initial query sequence. ThHe typical in any dynamic source routing protocol [20], each
transcoding scheme: MH that receivesR, additionally receives the ID of all MHs
that were used in the path from the querier to it. These IDs
can be maintained along witl® with minimal cost (only
some bytes). When a MH starts propagating answer-sets, it
gll,]ects among its current neighbors those that will propagate

and, during the backward phase, to use it for ear e answer-set (not all of them). To make this selection,

resolving false-positives, before they reach the querié _applies a policy that focuses on the neighbors that were

The problem of caching depends on several netV\Iopﬁkcluded in the path from the querier to it. Since several such
licies can be developed, in the next section we elaborate

arameters. This problem is independent to our approa . . o
b ISP 'S Indep ur app urther on them. All the policies, despite their differences,

while effective solutions can be found in [17], [29]. mphasize on selecting neighboring MHs that were included
I i f h impl hi . .
n our experiments, we found that by simply cac m% the path. The reason is that the cached representations that

the representations for a small, fixed amount of tim q intai ve fal i during th
adequate performance is attained. ese nodes maintain, can resolve false-positives during the

Reduces the processing (CPU) time at each MH, as
cost of resolving false-positives at each MH depends
the size ofR.

« Keeps forward traffic low, as the size &fis reducing at
each stage of the forward phase propagation.

Reduces backward traffic by letting the MHSs involved i
the forward phase to cache the transcoded representa

@Eckward phase. Therefore, traffic is substantially reduced.
ore details will be given in Section VI.
The algorithm that combines all the aforementioned charac-
teristics is denoted as RT (querying Bgduced representation
The reduction is performed by gettirigvalues according with Transcoding) and is illustrated in Figure 6. The handling
to an inverse sigmoid function (Figure 5b). Due to the shapg success or failure is treated similarly to standard routing
of this function, the immediate neighborhood of the querieMANET protocols employing a TTL-like policy [59].

which can provide results faster, receives a laiBewhereas

the burden posed on MHs that are far is appreciably small

Also, this way we control the exponential growth of traffi¢
that results by plain broadcasting of full-size representatian.

An example is depicted in Figure 5&; is the querier and
P, is the node that starts propagating the answer-set. T
MHs in the path fromP; to P, are depicted gray shaded
and they are annotated with the size ®fthat reaches them
(P, starts with 10 K DWT coefficients). Figure 5b illustrates
that these sizes are reducing, following an inverse sigmdg
function. During the backward phase, starting frétn MHs
P; and P5 can be reached (depicted with dashed arrows). T
cached representation i’y can help to resolve possible false
positives in the answer-set. The reason is thaPjrthe false-
positives were examined against a smalethan the one in
Ps. In contrast,P; was not in the path, thus cannot resolv
any false-positives.

er. o .
Query initialization The querier setskR equal to 3

sample with an initial size (parameter) plus the qu
coefficients, and propagates (broadcasts) it to al
neighbors.

Reception of R Upon the reception o, each MHP
probes its indexes, resolves as many false-positive
possible based on the received query sampl&,0ind
produces a list of results. The answer-set is propag
back to the querier, by following the described pol
for the backward phase. Accordingly, should there
availableh, R's size is reduced, and the reducg&dis
conveyed to allP's neighboring MHs (forward phase
Reception of an answer-seWhen a MH receives
reply, it checks if it can resolve any false-positives. T
is true should it have received (if any) a representd
that was larger than the one that the sequence
the answer set were examined previously (i.e., at
sending MH). After any possible pruning, as long
there is availablé, the answer-set is routed backwa
following a policy.

An answer-set reaches the querieiWVhen an answe
set reaches the querier, initially any remaining fa|
positives require resolution, and then the results
presented to the user.
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Fig. 5. An example of the searching procedure.

Fig. 6. TheRT algorithm.



VI. ROUTING POLICIES FOR THE BACKWARD PHASE reached at any point again, then, as previously, GC tries to find

In this section we describe three policies for routing th&S Predecessor. In the examplg; is a node from the path,
answer-sets in the backward phase. The first two policiddlich has been reached withequal to 2. Its predecessor is
(global and local counter, described in [10]) are based di Which then propagates (dsis 1) the answer set (6’
existing methods, whereas the third one (critical mass) 3§d the procedure terminates.
novel. As mentioned, all policies try to select nodes that were!n summary, when selecting the MHs to route back the
included in the path during the forward phase. Neverthele§§1SWer-set, GC tries to follow the MHSs included in the for_ward
the backward phase cannot be based only on such nodé&th. However, to overcome problems .from. the alteratpn of
Due to the mobility of MHs, it may be impossible to reach® MANET (like the disappearance & in this example), it
the querier unless other MHs (not included in the pat lows an amount of discrepancy by resorting to broadca;tlng.
are additionally involved. The objective of all policies is tol® control the discrepancy, and thus the backward traffic, it
control the number of involved MHs so as to reduce backwat$es the value ot. Notice that with a very large:, GC
traffic. These policies constitute a hybrid approach betweEfSOrts to broadcasting for a very large number of times,
probabilistic broadcasting, where the broadcasting decisioni§!S becoming equivalent to the simplistic policy used by
completely local to each mobile host and the deterministié® ML searching algorithm. In contrast, with a very small
broadcasting which relies on the discovery of some form 6f the querier may not become reachable, especially when the

connected dominating set [35]. MANET changes very fast. _
A variation of GC works as follows. After a discrepancy,

when a MH from the path has been reached again, we heset
to its initial value. In the previous example, wh&qis reached

To clarify the description of the first two policies, consideagain, available hop is reset to 6 (initial value). Thugicts as
the example of Figure 7a, which depicts the path from MH a decreasing local counter, because it is reset independently at
to MH Fs, which was followed in the forward phase. Figure 78everal MHs. For this reason this policy is denotedozsl-
depicts the routing of the answer-set frafy back to P;. counter (LC). Its objective is to increase the probability of
Comparing the two phases, several MHs have changed theisching the querier, by rewarding the identification of the
location, others have switched off, and some new ones hdgeward path. Nevertheless, this can increase the backward
become reachable. The MHs that are depicted grey color atsffic.
the ones that were included in the forward path too, whereas
the rest are new ones that were involved only in the backwaéd

A. Global and local counter policies

Critical mass policy

phase.
With the critical-mass (CM) policy, if at least a number,
. . denoted agritical-mass factor(CMF), of the current neigh-
) \ bors was in the forward path, we select them as the only
5 B, ones to propagate the answer-set. If their number is less
P Ps than CMF, then we additionally select randomly some of the

current neighbors (not in the path) in order to have at least
(b) CMF MHs to propagate the answer-set. In contrast, if their
. - _ umber is larger thatCMF, then they are all selected. For
Efc'kj\,'ard?)?]aesxeémple of propagation n @ MANET: &) forward phase. b xample, consider the case in Figure 8. Figure 8a depicts the
forward phase, whereas Figure 8b presents the backward case.
With the global-counter(GC) policy, when a MH P in  AS shown, during the backward phase some MHs have now
the example) starts propagating an answer-set, it tags fRtocated. LetCMF be 2. WhenP, starts propagating the
answer-set with a maximum number of re-transmissidns, answer-set, it first SeleCfgg,, because it b6|0ngs to the forward
equal to the length of the forward path plus an extra valiggth. Since this is the only such MH a@MF is 2, it also
e. In the example, the length (number of edges) is eqlgplectsPs at random among the other reachable MHs.
to 5. Lete = 1 and h = 6. GC tries to find among the
neighbors, the one that was its predecessor in the path. In the Fud oh
example, atP; GC tries to findPs. If this MH is reachable, wd phase Bwd phase
then it is the only one selected to propagate the answer-set P
and h is decreased by one. The same procedure is applied ) ’
recursively. AtP;, GC tries to findPy. If P, is not reachable,
as it is now the case, then GC propagates the answer-set to
all neighboring MHs (broadcasting t&; and Fs) and each
of them receives & value decreased by one. Next, unless
a MH in the forward path has been reached, GC continues (a)
by broadcasting to all neighbors. At each propagation of the
answer-seth is decreased by one, thus actually acting asry. 8. Example of relative locations of MHs in forward and
decreasing global counter. If a MH from the forward path igackward phase.

(a)




10

The nodes that were selected at random in order to fulfdl and the default MaxHop was set to 5. Henceforth, when
CMF, are still provided with the path of the MH that initiatedparameter values are not specified, we assume the default
the propagation of the answer-set (for the previous examplajues.

P; that is selected by, will also know the path fronP; to The evaluation metrics are the average traffic (measured in
Py). This way, due to mobility, it is possible for such node®Bytes) that each query incurs, the number of results obtained
during the backward phase to find neighbors that appear in tired the time the first and last result were discovered (the time
forwarded path (in the same exampl, finds P, that was of the first result is a useful measure, since users may terminate
in the path). Therefore, the impact of such randomly selectedarching early). The results on time reflect the perceived
MHs on the proposed policy may be kept at a moderate levidtency required for the response to the querier. In contrast,

The CM policy differs from GC and LC in the following total traffic reflects the load posed to the network in order
aspects: (i) It does not search predecessors in the path, as iprovide responses. Thus, the two factors require separate
focuses on identifying MHs that were in the forward path;onsideration.
regardless of their order (i.e. not searching for the previous
node). This makes CM more flexible to the changes in t ;

MANET. (i) It never resorts to broadcasting to all neighbor?.ge' Exper@ental resglts ) ] _
At worst case, the number of randomly selected MHs is equalll our first experiment, we examined the traffic against

to CMF. This attains better control of the backward trafficMaxHop. The results are illustrated in Figure 9a. The forward
Due to the aforementioned characteristics, CM is expected@d backward traffics are depicted separately, whereas their

outperform GC and LC, as will be shown in Section VL. addition (height of bars) gives the total traffic. As expected,
ML produces the highest forward traffic in all cases (due to

maximal query representation), whereas the forward traffic of
CM, LC and GC are about the same. Regarding backward
A. Simulation configuration traffic, as described, ML attains a decreased number of re-

In this section, we provide an experimental comparison gyrning results. However, due to the absence of an efficient
the three described content-based audio retrieval algorithfR@ckward routing policy, this advantage is invalidated. The
The performance of the algorithms was compared throué@st approaches, considerably improve backward traffic, with
simulation. The settings of the simulation were as follow§M performing better for MaxHop greater than seven. From
The mobile ad-hoc network had 100 nodes. We used 300 ré¥p result it becomes obvious that, although the backward
acoustic sequences, which correspond to various pop sorj@se is in general more demanding for all algorithms, due
The average duration was about 5 minutes. To account f8rthe reduction of backward traffic attained by CM, LC and
the fact that songs (especially the popular ones) are comnfef the requirement of optimizing the forward phase, is fair.
in several nodes, we replicated each sequence to a nunmb@gitionally notice that the number of results (depicted in
of MHs (default value equals to four). The aforementionedigure 9a with a solid line) obtained by ML are less than
settings correspond to a realistic scenario for a MANET, lik&e results obtained by CM, LC and GC and although the
the one described in the Introduction. Accordingly, the averagéference is small, there is a clear trend.
number of sequences per node was 12, a quantity that is quite
reasonable for the state-of-the-art MP3 cell phones [48] and o
PDAs, both of which support the latest memory cards. T nalresdle

Regarding the simulation of mobility, we based our exper-
iments on the GSTD simulator, as presented in [52], which
considers hosts moving freely in a 2-D area. We used a !
squared area with side equal to 4,000 m, whereas the trans- HHH HHH

0-5‘ 0—6‘0
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mission/reception range of each MH was set to 500 m radius. 0
Different degrees of velocity were selected for the moving

MHs, adjusted by parameters of the GSTD, but due to lack of Maxtiop

space we present results only for the average walking speed (@)

of a human (5 Km/h). Additionally, to account for the fact 27 Dlastresul M N
that mobile devices may enter doze mode (power-safe status ~— w{ """
where the device is out of network), we take each time for s

the MHs a doze-mode probability, with default value equal to
0.1 (that is, at each time unit a MH is out of network with . f

Time (sec)
>

probability 0.1).

Regarding CM, the default value f@MF was 10% of the
number of neighbors at each MH, whereas the default initial
sample size was 10% of the query sequence’s size. For GC MaxHop
and LC policies, the additional value added to MaxHop
is set to 2 (we tried other similar values with no significant (b)
improvement). For all algorithms, the default valuecofvas Fig. 9. Traffic, number and time of results vs. MaxHop
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[ Total traffic ML

This result can be further clarified by the results on time of ™7 I Tota vatic Gl T
the first and last results, which are depicted in Figure 9b. In :"* e
this figure, the height of the bars correspond to the time of last
result, whereas the time of first result is depicted separatelyg 61
as its fraction. As expected, increase in available MaxHop 3 5+

al
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—+—Final results GC
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produces longer times, since more MHs are examined. In allg
cases, the increase in time is far more steep for ML, while
CM presents an advantage over LC and GC. Il
Next, we examined the impact of the document replication il N IR
degree on the traffic and the time of the first and last result. The e p:’;-’;bim:-3
former experiment (given in Figure 10a) shows that an increase
in the replication degree has a clear impact on both the numbeFig. 11. Traffic and number of results vs. doze mode probability
of results and the backward traffic. This is especially true for

+
o
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4+ 0.0

ML. Once again, the number of results obtained by ML are “ Blastresult OFistresul - A
slightly less than for the other. Regarding times of first and 8
last result (Figure 10b), an analogous behavior is observed. A"
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perumenteplation degres We also tested the sensitivity of the CM algorithm against
€)) | and o parameters (as formally described in Section V-B).
The results are illustrated in Figure 13a. For bétland «

Dt resul M parameters, the performance of ML remains totally unaffected
and is only included for comparison purposes. As far as the
| parameter is concerned, backward traffic is unaffected. As

N el expected, forward traffic increases with increasing sample size.
For the examined range of values, the reduction in traffic is
i
23 2

Time (sec)
O a v w s OO N O D

| I R

HH ﬂﬂﬂ not combined with a change in the number of found matches,
2393 2333 9y 2398 2398 2398 which are similar in the order of decimal values, and thus
1 2 4 6 8 10

omitted. In contrast, the examined values forparameter
resulted to small differences between the approaches.
(b) Finally, we examined the sensitivity of CM againrGMF
Fig. 10. Traffic, number and time of results vs. document replication degrg@e others are not aﬁeCteq 8MF). The traffic and numbe_r
of results of CM, for varyingCMF values, are depicted in

The following experiment considered the traffic produce':Igure 13b. WheiCMF 'S h|.gh., the effectweness of the policy

by the MH doze-mode probability (Figure 11). It is quiteor the backward_ phas_e is limited, since mpstMHs are select_ed
' t random by this policy. Thus, the resulting backward traffic

clear that for increased values of probability, the network

becomes less connected, thus leading in decrease of the reé%lps'gh (forward traffic is not affected). Notice that, for the

examined range dEMF values, the reduction in traffic slightly

returning to the querier. ML is clearly outperformed, whereagﬁects the number of found matches (the difference between

the others perform about the same. What is more, the increﬁ%se )
) o . . _."the results for the extreme values GMF are only in the
in doze-mode probability leads to a decrease in traffic, since ) . .
S > o grder of decimal values). On the other hand, the increase in

the diminished connectivity of the graph prohibits both thﬁ] . ; .

. . e results comes at the cost of higher traffic. Conclusively,
discovery of results and the propagation of any found. . e

. . ) relatively smallCMF values are sufficient.

Next, we examine the impact of query rangeFigure 12
shows the results for traffic with respectdoSince CM, LC,
and GC perform similarly, to improve clarity we only include VIII. CONCLUSIONS
the results for the former. As increases, more results are In this paper, we introduce the application of CBMIR
found and, thus, backward traffic increases too (forward traffapplication in wireless ad-hoc networks. We recognize the
is unaffected). However, the increase is much more obvionsew challenges posed by this type of networks. To address
for ML, whereas CM, due the effectiveness of the policy fahem, we propose a novel algorithm, which is based on a
the backward phase, has a very smooth increase. twofold optimization: (i) the use of query representation with

Document replication degree
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Fig. 13. Traffic vs. | &a parameters (a) and Traffic & number of results vs. CMF (b)

reducing length, (i) a selective policies for the routing ofi0] R. Castaneda, S. R. Das, and M. K. Marina, “Query localization
answers, which performs additional pruning of traffic. The
combination of these factors attains significant reduction jq;
both response times and traffic. This is verified through
extensive experimental results, which illustrate the suitabilitY
[12]
of the proposed method.
Concluding, we have to mention that the examined context tions on Knowledge and Data Engineeringl. 15, no. 3, 2003.

does not depend on the specific features and distance meag

since it can be used in combination of several other ones, as

long as they allow for a reducing-length representation.

(14]

In future work, we plan to examine other features and to
develop a real prototype with mobile devices. AdditionaII){,15]
we intend to extend the system so as to accommodate musical evolution: A revolution on the movelEEE Communications magazine
genre querying as well. The key idea is that based on_a

annotated querying feature set(such as the features describé%ﬁn

[54]) the querier can identify similar genre audio data within

a mobile ad-hoc network.
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